"""Dataset for stochastic block model."""
import math
import os
import random
import numpy as np
import numpy.random as npr
import scipy as sp
from .. import batch
from ..convert import from_scipy
from .dgl_dataset import DGLDataset
from .utils import load_graphs, load_info, save_graphs, save_info
def sbm(n_blocks, block_size, p, q, rng=None):
"""(Symmetric) Stochastic Block Model
Parameters
----------
n_blocks : int
Number of blocks.
block_size : int
Block size.
p : float
Probability for intra-community edge.
q : float
Probability for inter-community edge.
rng : numpy.random.RandomState, optional
Random number generator.
Returns
-------
scipy sparse matrix
The adjacency matrix of generated graph.
"""
n = n_blocks * block_size
p /= n
q /= n
rng = np.random.RandomState() if rng is None else rng
rows = []
cols = []
for i in range(n_blocks):
for j in range(i, n_blocks):
density = p if i == j else q
block = sp.sparse.random(
block_size,
block_size,
density,
random_state=rng,
data_rvs=lambda n: np.ones(n),
)
rows.append(block.row + i * block_size)
cols.append(block.col + j * block_size)
rows = np.hstack(rows)
cols = np.hstack(cols)
a = sp.sparse.coo_matrix(
(np.ones(rows.shape[0]), (rows, cols)), shape=(n, n)
)
adj = sp.sparse.triu(a) + sp.sparse.triu(a, 1).transpose()
return adj
[docs]class SBMMixtureDataset(DGLDataset):
r"""Symmetric Stochastic Block Model Mixture
Reference: Appendix C of `Supervised Community Detection with Hierarchical Graph Neural Networks <https://arxiv.org/abs/1705.08415>`_
Parameters
----------
n_graphs : int
Number of graphs.
n_nodes : int
Number of nodes.
n_communities : int
Number of communities.
k : int, optional
Multiplier. Default: 2
avg_deg : int, optional
Average degree. Default: 3
pq : list of pair of nonnegative float or str, optional
Random densities. This parameter is for future extension,
for now it's always using the default value.
Default: Appendix_C
rng : numpy.random.RandomState, optional
Random number generator. If not given, it's numpy.random.RandomState() with `seed=None`,
which read data from /dev/urandom (or the Windows analogue) if available or seed from
the clock otherwise.
Default: None
Raises
------
RuntimeError is raised if pq is not a list or string.
Examples
--------
>>> data = SBMMixtureDataset(n_graphs=16, n_nodes=10000, n_communities=2)
>>> from torch.utils.data import DataLoader
>>> dataloader = DataLoader(data, batch_size=1, collate_fn=data.collate_fn)
>>> for graph, line_graph, graph_degrees, line_graph_degrees, pm_pd in dataloader:
... # your code here
"""
def __init__(
self,
n_graphs,
n_nodes,
n_communities,
k=2,
avg_deg=3,
pq="Appendix_C",
rng=None,
):
self._n_graphs = n_graphs
self._n_nodes = n_nodes
self._n_communities = n_communities
assert n_nodes % n_communities == 0
self._block_size = n_nodes // n_communities
self._k = k
self._avg_deg = avg_deg
self._pq = pq
self._rng = rng
super(SBMMixtureDataset, self).__init__(
name="sbmmixture",
hash_key=(n_graphs, n_nodes, n_communities, k, avg_deg, pq, rng),
)
def process(self):
pq = self._pq
if type(pq) is list:
assert len(pq) == self._n_graphs
elif type(pq) is str:
generator = {"Appendix_C": self._appendix_c}[pq]
pq = [generator() for _ in range(self._n_graphs)]
else:
raise RuntimeError()
self._graphs = [
from_scipy(sbm(self._n_communities, self._block_size, *x))
for x in pq
]
self._line_graphs = [
g.line_graph(backtracking=False) for g in self._graphs
]
in_degrees = lambda g: g.in_degrees().float()
self._graph_degrees = [in_degrees(g) for g in self._graphs]
self._line_graph_degrees = [in_degrees(lg) for lg in self._line_graphs]
self._pm_pds = list(zip(*[g.edges() for g in self._graphs]))[0]
def has_cache(self):
graph_path = os.path.join(
self.save_path, "graphs_{}.bin".format(self.hash)
)
line_graph_path = os.path.join(
self.save_path, "line_graphs_{}.bin".format(self.hash)
)
info_path = os.path.join(
self.save_path, "info_{}.pkl".format(self.hash)
)
return (
os.path.exists(graph_path)
and os.path.exists(line_graph_path)
and os.path.exists(info_path)
)
def save(self):
graph_path = os.path.join(
self.save_path, "graphs_{}.bin".format(self.hash)
)
line_graph_path = os.path.join(
self.save_path, "line_graphs_{}.bin".format(self.hash)
)
info_path = os.path.join(
self.save_path, "info_{}.pkl".format(self.hash)
)
save_graphs(graph_path, self._graphs)
save_graphs(line_graph_path, self._line_graphs)
save_info(
info_path,
{
"graph_degree": self._graph_degrees,
"line_graph_degree": self._line_graph_degrees,
"pm_pds": self._pm_pds,
},
)
def load(self):
graph_path = os.path.join(
self.save_path, "graphs_{}.bin".format(self.hash)
)
line_graph_path = os.path.join(
self.save_path, "line_graphs_{}.bin".format(self.hash)
)
info_path = os.path.join(
self.save_path, "info_{}.pkl".format(self.hash)
)
self._graphs, _ = load_graphs(graph_path)
self._line_graphs, _ = load_graphs(line_graph_path)
info = load_info(info_path)
self._graph_degrees = info["graph_degree"]
self._line_graph_degrees = info["line_graph_degree"]
self._pm_pds = info["pm_pds"]
[docs] def __len__(self):
r"""Number of graphs in the dataset."""
return len(self._graphs)
[docs] def __getitem__(self, idx):
r"""Get one example by index
Parameters
----------
idx : int
Item index
Returns
-------
graph: :class:`dgl.DGLGraph`
The original graph
line_graph: :class:`dgl.DGLGraph`
The line graph of `graph`
graph_degree: numpy.ndarray
In degrees for each node in `graph`
line_graph_degree: numpy.ndarray
In degrees for each node in `line_graph`
pm_pd: numpy.ndarray
Edge indicator matrices Pm and Pd
"""
return (
self._graphs[idx],
self._line_graphs[idx],
self._graph_degrees[idx],
self._line_graph_degrees[idx],
self._pm_pds[idx],
)
def _appendix_c(self):
q = npr.uniform(0, self._avg_deg - math.sqrt(self._avg_deg))
p = self._k * self._avg_deg - q
if random.random() < 0.5:
return p, q
else:
return q, p
[docs] def collate_fn(self, x):
r"""The `collate` function for dataloader
Parameters
----------
x : tuple
a batch of data that contains:
- graph: :class:`dgl.DGLGraph`
The original graph
- line_graph: :class:`dgl.DGLGraph`
The line graph of `graph`
- graph_degree: numpy.ndarray
In degrees for each node in `graph`
- line_graph_degree: numpy.ndarray
In degrees for each node in `line_graph`
- pm_pd: numpy.ndarray
Edge indicator matrices Pm and Pd
Returns
-------
g_batch: :class:`dgl.DGLGraph`
Batched graphs
lg_batch: :class:`dgl.DGLGraph`
Batched line graphs
degg_batch: numpy.ndarray
A batch of in degrees for each node in `g_batch`
deglg_batch: numpy.ndarray
A batch of in degrees for each node in `lg_batch`
pm_pd_batch: numpy.ndarray
A batch of edge indicator matrices Pm and Pd
"""
g, lg, deg_g, deg_lg, pm_pd = zip(*x)
g_batch = batch.batch(g)
lg_batch = batch.batch(lg)
degg_batch = np.concatenate(deg_g, axis=0)
deglg_batch = np.concatenate(deg_lg, axis=0)
pm_pd_batch = np.concatenate(
[x + i * self._n_nodes for i, x in enumerate(pm_pd)], axis=0
)
return g_batch, lg_batch, degg_batch, deglg_batch, pm_pd_batch
SBMMixture = SBMMixtureDataset