"""Base classes and functionalities for dataloaders"""
from collections.abc import Mapping
import inspect
from ..base import NID, EID
from ..convert import heterograph
from .. import backend as F
from ..transforms import compact_graphs
from ..frame import LazyFeature
from ..utils import recursive_apply, context_of
def _set_lazy_features(x, xdata, feature_names):
if feature_names is None:
return
if not isinstance(feature_names, Mapping):
xdata.update({k: LazyFeature(k) for k in feature_names})
else:
for type_, names in feature_names.items():
x[type_].data.update({k: LazyFeature(k) for k in names})
[docs]def set_node_lazy_features(g, feature_names):
"""Assign lazy features to the ``ndata`` of the input graph for prefetching optimization.
When used in a :class:`~dgl.dataloading.Sampler`, lazy features mark which data
should be fetched before computation in model. See :ref:`guide-minibatch-prefetching`
for a detailed explanation.
If the graph is homogeneous, this is equivalent to:
.. code:: python
g.ndata.update({k: LazyFeature(k, g.ndata[dgl.NID]) for k in feature_names})
If the graph is heterogeneous, this is equivalent to:
.. code:: python
for type_, names in feature_names.items():
g.nodes[type_].data.update(
{k: LazyFeature(k, g.nodes[type_].data[dgl.NID]) for k in names})
Parameters
----------
g : DGLGraph
The graph.
feature_names : list[str] or dict[str, list[str]]
The feature names to prefetch.
See also
--------
dgl.LazyFeature
"""
return _set_lazy_features(g.nodes, g.ndata, feature_names)
[docs]def set_edge_lazy_features(g, feature_names):
"""Assign lazy features to the ``edata`` of the input graph for prefetching optimization.
When used in a :class:`~dgl.dataloading.Sampler`, lazy features mark which data
should be fetched before computation in model. See :ref:`guide-minibatch-prefetching`
for a detailed explanation.
If the graph is homogeneous, this is equivalent to:
.. code:: python
g.edata.update({k: LazyFeature(k, g.edata[dgl.EID]) for k in feature_names})
If the graph is heterogeneous, this is equivalent to:
.. code:: python
for type_, names in feature_names.items():
g.edges[type_].data.update(
{k: LazyFeature(k, g.edges[type_].data[dgl.EID]) for k in names})
Parameters
----------
g : DGLGraph
The graph.
feature_names : list[str] or dict[etype, list[str]]
The feature names to prefetch. The ``etype`` key is either a string
or a triplet.
See also
--------
dgl.LazyFeature
"""
return _set_lazy_features(g.edges, g.edata, feature_names)
[docs]def set_src_lazy_features(g, feature_names):
"""Assign lazy features to the ``srcdata`` of the input graph for prefetching optimization.
When used in a :class:`~dgl.dataloading.Sampler`, lazy features mark which data
should be fetched before computation in model. See :ref:`guide-minibatch-prefetching`
for a detailed explanation.
If the graph is homogeneous, this is equivalent to:
.. code:: python
g.srcdata.update({k: LazyFeature(k, g.srcdata[dgl.NID]) for k in feature_names})
If the graph is heterogeneous, this is equivalent to:
.. code:: python
for type_, names in feature_names.items():
g.srcnodes[type_].data.update(
{k: LazyFeature(k, g.srcnodes[type_].data[dgl.NID]) for k in names})
Parameters
----------
g : DGLGraph
The graph.
feature_names : list[str] or dict[str, list[str]]
The feature names to prefetch.
See also
--------
dgl.LazyFeature
"""
return _set_lazy_features(g.srcnodes, g.srcdata, feature_names)
[docs]def set_dst_lazy_features(g, feature_names):
"""Assign lazy features to the ``dstdata`` of the input graph for prefetching optimization.
When used in a :class:`~dgl.dataloading.Sampler`, lazy features mark which data
should be fetched before computation in model. See :ref:`guide-minibatch-prefetching`
for a detailed explanation.
If the graph is homogeneous, this is equivalent to:
.. code:: python
g.dstdata.update({k: LazyFeature(k, g.dstdata[dgl.NID]) for k in feature_names})
If the graph is heterogeneous, this is equivalent to:
.. code:: python
for type_, names in feature_names.items():
g.dstnodes[type_].data.update(
{k: LazyFeature(k, g.dstnodes[type_].data[dgl.NID]) for k in names})
Parameters
----------
g : DGLGraph
The graph.
feature_names : list[str] or dict[str, list[str]]
The feature names to prefetch.
See also
--------
dgl.LazyFeature
"""
return _set_lazy_features(g.dstnodes, g.dstdata, feature_names)
[docs]class Sampler(object):
"""Base class for graph samplers.
All graph samplers must subclass this class and override the ``sample``
method.
.. code:: python
from dgl.dataloading import Sampler
class SubgraphSampler(Sampler):
def __init__(self):
super().__init__()
def sample(self, g, indices):
return g.subgraph(indices)
"""
def sample(self, g, indices):
"""Abstract sample method.
Parameters
----------
g : DGLGraph
The graph.
indices : object
Any object representing the indices selected in the current minibatch.
"""
raise NotImplementedError
[docs]class BlockSampler(Sampler):
"""Base class for sampling mini-batches in the form of Message-passing
Flow Graphs (MFGs).
It provides prefetching options to fetch the node features for the first MFG's ``srcdata``,
the node labels for the last MFG's ``dstdata`` and the edge features of all MFG's ``edata``.
Parameters
----------
prefetch_node_feats : list[str] or dict[str, list[str]], optional
The node data to prefetch for the first MFG.
DGL will populate the first layer's MFG's ``srcnodes`` and ``srcdata`` with
the node data of the given names from the original graph.
prefetch_labels : list[str] or dict[str, list[str]], optional
The node data to prefetch for the last MFG.
DGL will populate the last layer's MFG's ``dstnodes`` and ``dstdata`` with
the node data of the given names from the original graph.
prefetch_edge_feats : list[str] or dict[etype, list[str]], optional
The edge data names to prefetch for all the MFGs.
DGL will populate every MFG's ``edges`` and ``edata`` with the edge data
of the given names from the original graph.
output_device : device, optional
The device of the output subgraphs or MFGs. Default is the same as the
minibatch of seed nodes.
"""
[docs] def __init__(self, prefetch_node_feats=None, prefetch_labels=None,
prefetch_edge_feats=None, output_device=None):
super().__init__()
self.prefetch_node_feats = prefetch_node_feats or []
self.prefetch_labels = prefetch_labels or []
self.prefetch_edge_feats = prefetch_edge_feats or []
self.output_device = output_device
def sample_blocks(self, g, seed_nodes, exclude_eids=None):
"""Generates a list of blocks from the given seed nodes.
This function must return a triplet where the first element is the input node IDs
for the first GNN layer (a tensor or a dict of tensors for heterogeneous graphs),
the second element is the output node IDs for the last GNN layer, and the third
element is the said list of blocks.
"""
raise NotImplementedError
def assign_lazy_features(self, result):
"""Assign lazy features for prefetching."""
input_nodes, output_nodes, blocks = result
set_src_lazy_features(blocks[0], self.prefetch_node_feats)
set_dst_lazy_features(blocks[-1], self.prefetch_labels)
for block in blocks:
set_edge_lazy_features(block, self.prefetch_edge_feats)
return input_nodes, output_nodes, blocks
def sample(self, g, seed_nodes, exclude_eids=None): # pylint: disable=arguments-differ
"""Sample a list of blocks from the given seed nodes."""
result = self.sample_blocks(g, seed_nodes, exclude_eids=exclude_eids)
return self.assign_lazy_features(result)
def _find_exclude_eids_with_reverse_id(g, eids, reverse_eid_map):
if isinstance(eids, Mapping):
eids = {g.to_canonical_etype(k): v for k, v in eids.items()}
exclude_eids = {
k: F.cat([v, F.gather_row(reverse_eid_map[k], v)], 0)
for k, v in eids.items()}
else:
exclude_eids = F.cat([eids, F.gather_row(reverse_eid_map, eids)], 0)
return exclude_eids
def _find_exclude_eids_with_reverse_types(g, eids, reverse_etype_map):
exclude_eids = {g.to_canonical_etype(k): v for k, v in eids.items()}
reverse_etype_map = {
g.to_canonical_etype(k): g.to_canonical_etype(v)
for k, v in reverse_etype_map.items()}
exclude_eids.update({reverse_etype_map[k]: v for k, v in exclude_eids.items()})
return exclude_eids
def _find_exclude_eids(g, exclude_mode, eids, **kwargs):
if exclude_mode is None:
return None
elif callable(exclude_mode):
return exclude_mode(eids)
elif F.is_tensor(exclude_mode) or (
isinstance(exclude_mode, Mapping) and
all(F.is_tensor(v) for v in exclude_mode.values())):
return exclude_mode
elif exclude_mode == 'self':
return eids
elif exclude_mode == 'reverse_id':
return _find_exclude_eids_with_reverse_id(g, eids, kwargs['reverse_eid_map'])
elif exclude_mode == 'reverse_types':
return _find_exclude_eids_with_reverse_types(g, eids, kwargs['reverse_etype_map'])
else:
raise ValueError('unsupported mode {}'.format(exclude_mode))
def find_exclude_eids(g, seed_edges, exclude, reverse_eids=None, reverse_etypes=None,
output_device=None):
"""Find all edge IDs to exclude according to :attr:`exclude_mode`.
Parameters
----------
g : DGLGraph
The graph.
exclude_mode : str, optional
Can be either of the following,
None (default)
Does not exclude any edge.
'self'
Exclude the given edges themselves but nothing else.
'reverse_id'
Exclude all edges specified in ``eids``, as well as their reverse edges
of the same edge type.
The mapping from each edge ID to its reverse edge ID is specified in
the keyword argument ``reverse_eid_map``.
This mode assumes that the reverse of an edge with ID ``e`` and type
``etype`` will have ID ``reverse_eid_map[e]`` and type ``etype``.
'reverse_types'
Exclude all edges specified in ``eids``, as well as their reverse
edges of the corresponding edge types.
The mapping from each edge type to its reverse edge type is specified
in the keyword argument ``reverse_etype_map``.
This mode assumes that the reverse of an edge with ID ``e`` and type ``etype``
will have ID ``e`` and type ``reverse_etype_map[etype]``.
callable
Any function that takes in a single argument :attr:`seed_edges` and returns
a tensor or dict of tensors.
eids : Tensor or dict[etype, Tensor]
The edge IDs.
reverse_eids : Tensor or dict[etype, Tensor]
The mapping from edge ID to its reverse edge ID.
reverse_etypes : dict[etype, etype]
The mapping from edge etype to its reverse edge type.
output_device : device
The device of the output edge IDs.
"""
exclude_eids = _find_exclude_eids(
g,
exclude,
seed_edges,
reverse_eid_map=reverse_eids,
reverse_etype_map=reverse_etypes)
if exclude_eids is not None and output_device is not None:
exclude_eids = recursive_apply(exclude_eids, lambda x: F.copy_to(x, output_device))
return exclude_eids
class EdgePredictionSampler(Sampler):
"""Sampler class that wraps an existing sampler for node classification into another
one for edge classification or link prediction.
See also
--------
as_edge_prediction_sampler
"""
def __init__(self, sampler, exclude=None, reverse_eids=None,
reverse_etypes=None, negative_sampler=None, prefetch_labels=None):
super().__init__()
# Check if the sampler's sample method has an optional third argument.
argspec = inspect.getfullargspec(sampler.sample)
if len(argspec.args) < 4: # ['self', 'g', 'indices', 'exclude_eids']
raise TypeError(
"This sampler does not support edge or link prediction; please add an"
"optional third argument for edge IDs to exclude in its sample() method.")
self.reverse_eids = reverse_eids
self.reverse_etypes = reverse_etypes
self.exclude = exclude
self.sampler = sampler
self.negative_sampler = negative_sampler
self.prefetch_labels = prefetch_labels or []
self.output_device = sampler.output_device
def _build_neg_graph(self, g, seed_edges):
neg_srcdst = self.negative_sampler(g, seed_edges)
if not isinstance(neg_srcdst, Mapping):
assert len(g.canonical_etypes) == 1, \
'graph has multiple or no edge types; '\
'please return a dict in negative sampler.'
neg_srcdst = {g.canonical_etypes[0]: neg_srcdst}
dtype = F.dtype(list(neg_srcdst.values())[0][0])
ctx = context_of(seed_edges) if seed_edges is not None else g.device
neg_edges = {
etype: neg_srcdst.get(etype,
(F.copy_to(F.tensor([], dtype), ctx=ctx),
F.copy_to(F.tensor([], dtype), ctx=ctx)))
for etype in g.canonical_etypes}
neg_pair_graph = heterograph(
neg_edges, {ntype: g.num_nodes(ntype) for ntype in g.ntypes})
return neg_pair_graph
def assign_lazy_features(self, result):
"""Assign lazy features for prefetching."""
pair_graph = result[1]
set_edge_lazy_features(pair_graph, self.prefetch_labels)
# In-place updates
return result
def sample(self, g, seed_edges): # pylint: disable=arguments-differ
"""Samples a list of blocks, as well as a subgraph containing the sampled
edges from the original graph.
If :attr:`negative_sampler` is given, also returns another graph containing the
negative pairs as edges.
"""
if isinstance(seed_edges, Mapping):
seed_edges = {g.to_canonical_etype(k): v for k, v in seed_edges.items()}
exclude = self.exclude
pair_graph = g.edge_subgraph(
seed_edges, relabel_nodes=False, output_device=self.output_device)
eids = pair_graph.edata[EID]
if self.negative_sampler is not None:
neg_graph = self._build_neg_graph(g, seed_edges)
pair_graph, neg_graph = compact_graphs([pair_graph, neg_graph])
else:
pair_graph = compact_graphs(pair_graph)
pair_graph.edata[EID] = eids
seed_nodes = pair_graph.ndata[NID]
exclude_eids = find_exclude_eids(
g, seed_edges, exclude, self.reverse_eids, self.reverse_etypes,
self.output_device)
input_nodes, _, blocks = self.sampler.sample(g, seed_nodes, exclude_eids)
if self.negative_sampler is None:
return self.assign_lazy_features((input_nodes, pair_graph, blocks))
else:
return self.assign_lazy_features((input_nodes, pair_graph, neg_graph, blocks))
[docs]def as_edge_prediction_sampler(
sampler, exclude=None, reverse_eids=None, reverse_etypes=None, negative_sampler=None,
prefetch_labels=None):
"""Create an edge-wise sampler from a node-wise sampler.
For each batch of edges, the sampler applies the provided node-wise sampler to
their source and destination nodes to extract subgraphs. It also generates negative
edges if a negative sampler is provided, and extract subgraphs for their incident
nodes as well.
For each iteration, the sampler will yield
* A tensor of input nodes necessary for computing the representation on edges, or
a dictionary of node type names and such tensors.
* A subgraph that contains only the edges in the minibatch and their incident nodes.
Note that the graph has an identical metagraph with the original graph.
* If a negative sampler is given, another graph that contains the "negative edges",
connecting the source and destination nodes yielded from the given negative sampler.
* The subgraphs or MFGs returned by the provided node-wise sampler, generated
from the incident nodes of the edges in the minibatch (as well as those of the
negative edges if applicable).
Parameters
----------
sampler : Sampler
The node-wise sampler object. It additionally requires that the :attr:`sample`
method must have an optional third argument :attr:`exclude_eids` representing the
edge IDs to exclude from neighborhood. The argument will be either a tensor
for homogeneous graphs or a dict of edge types and tensors for heterogeneous
graphs.
exclude : str, optional
Whether and how to exclude dependencies related to the sampled edges in the
minibatch. Possible values are
* None, for not excluding any edges.
* ``self``, for excluding the edges in the current minibatch.
* ``reverse_id``, for excluding not only the edges in the current minibatch but
also their reverse edges according to the ID mapping in the argument
:attr:`reverse_eids`.
* ``reverse_types``, for excluding not only the edges in the current minibatch
but also their reverse edges stored in another type according to
the argument :attr:`reverse_etypes`.
* User-defined exclusion rule. It is a callable with edges in the current
minibatch as a single argument and should return the edges to be excluded.
reverse_eids : Tensor or dict[etype, Tensor], optional
A tensor of reverse edge ID mapping. The i-th element indicates the ID of
the i-th edge's reverse edge.
If the graph is heterogeneous, this argument requires a dictionary of edge
types and the reverse edge ID mapping tensors.
reverse_etypes : dict[etype, etype], optional
The mapping from the original edge types to their reverse edge types.
negative_sampler : callable, optional
The negative sampler.
prefetch_labels : list[str] or dict[etype, list[str]], optional
The edge labels to prefetch for the returned positive pair graph.
See :ref:`guide-minibatch-prefetching` for a detailed explanation of prefetching.
Examples
--------
The following example shows how to train a 3-layer GNN for edge classification on a
set of edges ``train_eid`` on a homogeneous undirected graph. Each node takes
messages from all neighbors.
Given an array of source node IDs ``src`` and another array of destination
node IDs ``dst``, the following code creates a bidirectional graph:
>>> g = dgl.graph((torch.cat([src, dst]), torch.cat([dst, src])))
Edge :math:`i`'s reverse edge in the graph above is edge :math:`i + |E|`. Therefore, we can
create a reverse edge mapping ``reverse_eids`` by:
>>> E = len(src)
>>> reverse_eids = torch.cat([torch.arange(E, 2 * E), torch.arange(0, E)])
By passing ``reverse_eids`` to the edge sampler, the edges in the current mini-batch and their
reversed edges will be excluded from the extracted subgraphs to avoid information leakage.
>>> sampler = dgl.dataloading.as_edge_prediction_sampler(
... dgl.dataloading.NeighborSampler([15, 10, 5]),
... exclude='reverse_id', reverse_eids=reverse_eids)
>>> dataloader = dgl.dataloading.DataLoader(
... g, train_eid, sampler,
... batch_size=1024, shuffle=True, drop_last=False, num_workers=4)
>>> for input_nodes, pair_graph, blocks in dataloader:
... train_on(input_nodes, pair_graph, blocks)
For link prediction, one can provide a negative sampler to sample negative edges.
The code below uses DGL's :class:`~dgl.dataloading.negative_sampler.Uniform`
to generate 5 negative samples per edge:
>>> neg_sampler = dgl.dataloading.negative_sampler.Uniform(5)
>>> sampler = dgl.dataloading.as_edge_prediction_sampler(
... dgl.dataloading.NeighborSampler([15, 10, 5]),
... sampler, exclude='reverse_id', reverse_eids=reverse_eids,
... negative_sampler=neg_sampler)
>>> dataloader = dgl.dataloading.DataLoader(
... g, train_eid, sampler,
... batch_size=1024, shuffle=True, drop_last=False, num_workers=4)
>>> for input_nodes, pos_pair_graph, neg_pair_graph, blocks in dataloader:
... train_on(input_nodes, pair_graph, neg_pair_graph, blocks)
For heterogeneous graphs, reverse edges may belong to a different relation. For example,
the relations "user-click-item" and "item-click-by-user" in the graph below are
mutual reverse.
>>> g = dgl.heterograph({
... ('user', 'click', 'item'): (user, item),
... ('item', 'clicked-by', 'user'): (item, user)})
To correctly exclude edges from each mini-batch, set ``exclude='reverse_types'`` and
pass a dictionary ``{'click': 'clicked-by', 'clicked-by': 'click'}`` to the
``reverse_etypes`` argument.
>>> sampler = dgl.dataloading.as_edge_prediction_sampler(
... dgl.dataloading.NeighborSampler([15, 10, 5]),
... exclude='reverse_types',
... reverse_etypes={'click': 'clicked-by', 'clicked-by': 'click'})
>>> dataloader = dgl.dataloading.DataLoader(
... g, {'click': train_eid}, sampler,
... batch_size=1024, shuffle=True, drop_last=False, num_workers=4)
>>> for input_nodes, pair_graph, blocks in dataloader:
... train_on(input_nodes, pair_graph, blocks)
For link prediction, provide a negative sampler to generate negative samples:
>>> neg_sampler = dgl.dataloading.negative_sampler.Uniform(5)
>>> sampler = dgl.dataloading.as_edge_prediction_sampler(
... dgl.dataloading.NeighborSampler([15, 10, 5]),
... exclude='reverse_types',
... reverse_etypes={'click': 'clicked-by', 'clicked-by': 'click'},
... negative_sampler=neg_sampler)
>>> dataloader = dgl.dataloading.DataLoader(
... g, train_eid, sampler,
... batch_size=1024, shuffle=True, drop_last=False, num_workers=4)
>>> for input_nodes, pos_pair_graph, neg_pair_graph, blocks in dataloader:
... train_on(input_nodes, pair_graph, neg_pair_graph, blocks)
"""
return EdgePredictionSampler(
sampler, exclude=exclude, reverse_eids=reverse_eids, reverse_etypes=reverse_etypes,
negative_sampler=negative_sampler, prefetch_labels=prefetch_labels)