4.6 Loading data from CSV files¶
Comma Separated Value (CSV) is a widely used data storage format. DGL provides
CSVDataset
for loading and parsing graph data stored in
CSV format.
To create a CSVDataset
object:
import dgl
ds = dgl.data.CSVDataset('/path/to/dataset')
The returned ds
object is a standard DGLDataset
. For
example, one can get graph samples using __getitem__
as well as node/edge
features using ndata
/edata
.
# A demonstration of how to use the loaded dataset. The feature names
# may vary depending on the CSV contents.
g = ds[0] # get the graph
label = g.ndata['label']
feat = g.ndata['feat']
Data folder structure¶
/path/to/dataset/
|-- meta.yaml # metadata of the dataset
|-- edges_0.csv # edge data including src_id, dst_id, feature, label and so on
|-- ... # you can have as many CSVs for edge data as you want
|-- nodes_0.csv # node data including node_id, feature, label and so on
|-- ... # you can have as many CSVs for node data as you want
|-- graphs.csv # graph-level features
Node/edge/graph-level data are stored in CSV files. meta.yaml
is a metadata file specifying
where to read nodes/edges/graphs data and how to parse them to construct the dataset
object. A minimal data folder contains one meta.yaml
and two CSVs, one for node data and one
for edge data, in which case the dataset contains only a single graph with no graph-level data.
Dataset of a single feature-less graph¶
When the dataset contains only one graph with no node or edge features, there need only three
files in the data folder: meta.yaml
, one CSV for node IDs and one CSV for edges:
./mini_featureless_dataset/
|-- meta.yaml
|-- nodes.csv
|-- edges.csv
meta.yaml
contains the following information:
dataset_name: mini_featureless_dataset
edge_data:
- file_name: edges.csv
node_data:
- file_name: nodes.csv
nodes.csv
lists the node IDs under the node_id
field:
node_id
0
1
2
3
4
edges.csv
lists all the edges in two columns (src_id
and dst_id
) specifying the
source and destination node ID of each edge:
src_id,dst_id
4,4
4,1
3,0
4,1
4,0
1,2
1,3
3,3
1,1
4,1
After loaded, the dataset has one graph without any features:
>>> import dgl
>>> dataset = dgl.data.CSVDataset('./mini_featureless_dataset')
>>> g = dataset[0] # only one graph
>>> print(g)
Graph(num_nodes=5, num_edges=10,
ndata_schemes={}
edata_schemes={})
Note
Non-integer node IDs are allowed. When constructing the graph, CSVDataset
will
map each raw ID to an integer ID starting from zero.
If the node IDs are already distinct integers from 0 to num_nodes-1
, no mapping
is applied.
Note
Edges are always directed. To have both directions, add reversed edges in the edge
CSV file or use AddReverse
to transform the loaded graph.
A graph without any feature is often of less interest. In the next example, we will show how to load and parse node or edge features.
Dataset of a single graph with features and labels¶
When the dataset contains a single graph with node or edge features and labels, there still
need only three files in the data folder: meta.yaml
, one CSV for node IDs and one CSV
for edges:
./mini_feature_dataset/
|-- meta.yaml
|-- nodes.csv
|-- edges.csv
meta.yaml
:
dataset_name: mini_feature_dataset
edge_data:
- file_name: edges.csv
node_data:
- file_name: nodes.csv
edges.csv
with five synthetic edge data (label
, train_mask
, val_mask
, test_mask
, feat
):
src_id,dst_id,label,train_mask,val_mask,test_mask,feat
4,0,2,False,True,True,"0.5477868606453535, 0.4470617033458436, 0.936706701616337"
4,0,0,False,False,True,"0.9794634290792008, 0.23682038840665198, 0.049629338970987646"
0,3,1,True,True,True,"0.8586722047523594, 0.5746912787380253, 0.6462162561249654"
0,1,2,True,False,False,"0.2730008213674695, 0.5937484188166621, 0.765544096939567"
0,2,1,True,True,True,"0.45441619816038514, 0.1681403185591509, 0.9952376085297715"
0,0,0,False,False,False,"0.4197669213305396, 0.849983324532477, 0.16974127573016262"
2,2,1,False,True,True,"0.5495035052928215, 0.21394654203489705, 0.7174910641836348"
1,0,2,False,True,False,"0.008790817766266334, 0.4216530595907526, 0.529195480661293"
3,0,0,True,True,True,"0.6598715708878852, 0.1932390907048961, 0.9774471538377553"
4,0,1,False,False,False,"0.16846068931179736, 0.41516080644186737, 0.002158116134429955"
nodes.csv
with five synthetic node data (label
, train_mask
, val_mask
, test_mask
, feat
):
node_id,label,train_mask,val_mask,test_mask,feat
0,1,False,True,True,"0.07816474278491703, 0.9137336384979067, 0.4654086994009452"
1,1,True,True,True,"0.05354099924658973, 0.8753101998792645, 0.33929432608774135"
2,1,True,False,True,"0.33234211884156384, 0.9370522452510665, 0.6694943496824788"
3,0,False,True,False,"0.9784264442230887, 0.22131880861864428, 0.3161154827254189"
4,1,True,True,False,"0.23142237259162102, 0.8715767748481147, 0.19117861103555467"
After loaded, the dataset has one graph. Node/edge features are stored in ndata
and edata
with the same column names. The example demonstrates how to specify a vector-shaped feature
using comma-separated list enclosed by double quotes "..."
.
>>> import dgl
>>> dataset = dgl.data.CSVDataset('./mini_feature_dataset')
>>> g = dataset[0] # only one graph
>>> print(g)
Graph(num_nodes=5, num_edges=10,
ndata_schemes={'label': Scheme(shape=(), dtype=torch.int64), 'train_mask': Scheme(shape=(), dtype=torch.bool), 'val_mask': Scheme(shape=(), dtype=torch.bool), 'test_mask': Scheme(shape=(), dtype=torch.bool), 'feat': Scheme(shape=(3,), dtype=torch.float64)}
edata_schemes={'label': Scheme(shape=(), dtype=torch.int64), 'train_mask': Scheme(shape=(), dtype=torch.bool), 'val_mask': Scheme(shape=(), dtype=torch.bool), 'test_mask': Scheme(shape=(), dtype=torch.bool), 'feat': Scheme(shape=(3,), dtype=torch.float64)})
Note
By default, CSVDatatset
assumes all feature data to be numerical values (e.g., int, float, bool or
list) and missing values are not allowed. Users could provide custom data parser for these cases.
See Custom Data Parser for more details.
Dataset of a single heterogeneous graph¶
One can specify multiple node and edge CSV files (each for one type) to represent a heterogeneous graph. Here is an example data with two node types and two edge types:
./mini_hetero_dataset/
|-- meta.yaml
|-- nodes_0.csv
|-- nodes_1.csv
|-- edges_0.csv
|-- edges_1.csv
The meta.yaml
specifies the node type name (using ntype
) and edge type name (using etype
)
of each CSV file. The edge type name is a string triplet containing the source node type name, relation
name and the destination node type name.
dataset_name: mini_hetero_dataset
edge_data:
- file_name: edges_0.csv
etype: [user, follow, user]
- file_name: edges_1.csv
etype: [user, like, item]
node_data:
- file_name: nodes_0.csv
ntype: user
- file_name: nodes_1.csv
ntype: item
The node and edge CSV files follow the same format as in homogeneous graphs. Here are some synthetic data for demonstration purposes:
edges_0.csv
and edges_1.csv
:
src_id,dst_id,label,feat
4,4,1,"0.736833152378035,0.10522806046048205,0.9418796835016118"
3,4,2,"0.5749339182767451,0.20181320245665535,0.490938012147181"
1,4,2,"0.7697294432580938,0.49397782380750765,0.10864079337442234"
0,4,0,"0.1364240150959487,0.1393107840629273,0.7901988878812207"
2,3,1,"0.42988138237505735,0.18389137408509248,0.18431292077750894"
0,4,2,"0.8613368738351794,0.67985810014162,0.6580438064356824"
2,4,1,"0.6594951663841697,0.26499036865016423,0.7891429392727503"
4,1,0,"0.36649684241348557,0.9511783938523962,0.8494919263589972"
1,1,2,"0.698592283371875,0.038622249776255946,0.5563827995742111"
0,4,1,"0.5227112950269823,0.3148264185956532,0.47562693094002173"
nodes_0.csv
and nodes_1.csv
:
node_id,label,feat
0,2,"0.5400687466285844,0.7588441197954202,0.4268254673041745"
1,1,"0.08680051341900807,0.11446843700743892,0.7196969604886617"
2,2,"0.8964389655603473,0.23368113896545695,0.8813472954005022"
3,1,"0.5454703921677284,0.7819383771535038,0.3027939452162367"
4,1,"0.5365210052235699,0.8975240205792763,0.7613943085507672"
After loaded, the dataset has one heterograph with features and labels:
>>> import dgl
>>> dataset = dgl.data.CSVDataset('./mini_hetero_dataset')
>>> g = dataset[0] # only one graph
>>> print(g)
Graph(num_nodes={'item': 5, 'user': 5},
num_edges={('user', 'follow', 'user'): 10, ('user', 'like', 'item'): 10},
metagraph=[('user', 'user', 'follow'), ('user', 'item', 'like')])
>>> g.nodes['user'].data
{'label': tensor([2, 1, 2, 1, 1]), 'feat': tensor([[0.5401, 0.7588, 0.4268],
[0.0868, 0.1145, 0.7197],
[0.8964, 0.2337, 0.8813],
[0.5455, 0.7819, 0.3028],
[0.5365, 0.8975, 0.7614]], dtype=torch.float64)}
>>> g.edges['like'].data
{'label': tensor([1, 2, 2, 0, 1, 2, 1, 0, 2, 1]), 'feat': tensor([[0.7368, 0.1052, 0.9419],
[0.5749, 0.2018, 0.4909],
[0.7697, 0.4940, 0.1086],
[0.1364, 0.1393, 0.7902],
[0.4299, 0.1839, 0.1843],
[0.8613, 0.6799, 0.6580],
[0.6595, 0.2650, 0.7891],
[0.3665, 0.9512, 0.8495],
[0.6986, 0.0386, 0.5564],
[0.5227, 0.3148, 0.4756]], dtype=torch.float64)}
Dataset of multiple graphs¶
When there are multiple graphs, one can include an additional CSV file for storing graph-level features. Here is an example:
./mini_multi_dataset/
|-- meta.yaml
|-- nodes.csv
|-- edges.csv
|-- graphs.csv
Accordingly, the meta.yaml
should include an extra graph_data
key to tell which CSV file to
load graph-level features from.
dataset_name: mini_multi_dataset
edge_data:
- file_name: edges.csv
node_data:
- file_name: nodes.csv
graph_data:
file_name: graphs.csv
To distinguish nodes and edges of different graphs, the node.csv
and edge.csv
must contain
an extra column graph_id
:
edges.csv
:
graph_id,src_id,dst_id,feat
0,0,4,"0.39534097273254654,0.9422093637539785,0.634899790318452"
0,3,0,"0.04486384200747007,0.6453746567017163,0.8757520744192612"
0,3,2,"0.9397636966928355,0.6526403892728874,0.8643238446466464"
0,1,1,"0.40559906615287566,0.9848072295736628,0.493888090726854"
0,4,1,"0.253458867276219,0.9168191778828504,0.47224962583565544"
0,0,1,"0.3219496197945605,0.3439899477636117,0.7051530741717352"
0,2,1,"0.692873149428549,0.4770019763881086,0.21937428942781778"
0,4,0,"0.620118223673067,0.08691420300562658,0.86573472329756"
0,2,1,"0.00743445923710373,0.5251800239734318,0.054016385555202384"
0,4,1,"0.6776417760682221,0.7291568018841328,0.4523600060547709"
1,1,3,"0.6375445528248924,0.04878384701995819,0.4081642382536248"
1,0,4,"0.776002616178397,0.8851294998284638,0.7321742043493028"
1,1,0,"0.0928555079874982,0.6156748364694707,0.6985674921582508"
1,0,2,"0.31328748118329997,0.8326121496142408,0.04133991340612775"
1,1,0,"0.36786902637778773,0.39161865931662243,0.9971749359397111"
1,1,1,"0.4647410679872376,0.8478810655406659,0.6746269314422184"
1,0,2,"0.8117650553546695,0.7893727601272978,0.41527155506593394"
1,1,3,"0.40707309111756307,0.2796588354307046,0.34846782265758314"
1,1,0,"0.18626464175355095,0.3523777809254057,0.7863421810531344"
1,3,0,"0.28357022069634585,0.13774964202156292,0.5913335505943637"
nodes.csv
:
graph_id,node_id,feat
0,0,"0.5725330322207948,0.8451870383322376,0.44412796119211184"
0,1,"0.6624186423087752,0.6118386331195641,0.7352138669985214"
0,2,"0.7583372765843964,0.15218126307872892,0.6810484348765842"
0,3,"0.14627522432017592,0.7457985352827006,0.1037097085190507"
0,4,"0.49037522512771525,0.8778998699783784,0.0911194482288028"
1,0,"0.11158102039672668,0.08543289788089736,0.6901745368284345"
1,1,"0.28367647637469273,0.07502571020414439,0.01217200152200748"
1,2,"0.2472495901894738,0.24285506608575758,0.6494437360242048"
1,3,"0.5614197853127827,0.059172654879085296,0.4692371689047904"
1,4,"0.17583413999295983,0.5191278830882644,0.8453123358491914"
The graphs.csv
contains a graph_id
column and arbitrary number of feature columns.
The example dataset here has two graphs, each with a feat
and a label
graph-level
data.
graph_id,feat,label
0,"0.7426272601929126,0.5197462471155317,0.8149104951283953",0
1,"0.534822233529295,0.2863627767733977,0.1154897249106891",0
After loaded, the dataset has multiple homographs with features and labels:
>>> import dgl
>>> dataset = dgl.data.CSVDataset('./mini_multi_dataset')
>>> print(len(dataset))
2
>>> graph0, data0 = dataset[0]
>>> print(graph0)
Graph(num_nodes=5, num_edges=10,
ndata_schemes={'feat': Scheme(shape=(3,), dtype=torch.float64)}
edata_schemes={'feat': Scheme(shape=(3,), dtype=torch.float64)})
>>> print(data0)
{'feat': tensor([0.7426, 0.5197, 0.8149], dtype=torch.float64), 'label': tensor(0)}
>>> graph1, data1 = dataset[1]
>>> print(graph1)
Graph(num_nodes=5, num_edges=10,
ndata_schemes={'feat': Scheme(shape=(3,), dtype=torch.float64)}
edata_schemes={'feat': Scheme(shape=(3,), dtype=torch.float64)})
>>> print(data1)
{'feat': tensor([0.5348, 0.2864, 0.1155], dtype=torch.float64), 'label': tensor(0)}
If there is a single feature column in graphs.csv
, data0
will directly be a tensor for the feature.
Custom Data Parser¶
By default, CSVDataset
assumes that all the stored node-/edge-/graph- level data are numerical
values. Users can provide custom DataParser
to CSVDataset
to handle more complex
data type. A DataParser
needs to implement the __call__
method which takes in the
pandas.DataFrame
object created from CSV file and should return a dictionary of
parsed feature data. The parsed feature data will be saved to the ndata
and edata
of
the corresponding DGLGraph
object, and thus must be tensors or numpy arrays. Below shows an example
DataParser
which converts string type labels to integers:
Given a dataset as follows,
./customized_parser_dataset/
|-- meta.yaml
|-- nodes.csv
|-- edges.csv
meta.yaml
:
dataset_name: customized_parser_dataset
edge_data:
- file_name: edges.csv
node_data:
- file_name: nodes.csv
edges.csv
:
src_id,dst_id,label
4,0,positive
4,0,negative
0,3,positive
0,1,positive
0,2,negative
0,0,positive
2,2,negative
1,0,positive
3,0,negative
4,0,positive
nodes.csv
:
node_id,label
0,positive
1,negative
2,positive
3,negative
4,positive
To parse the string type labels, one can define a DataParser
class as follows:
import numpy as np
import pandas as pd
class MyDataParser:
def __call__(self, df: pd.DataFrame):
parsed = {}
for header in df:
if 'Unnamed' in header: # Handle Unnamed column
print("Unamed column is found. Ignored...")
continue
dt = df[header].to_numpy().squeeze()
if header == 'label':
dt = np.array([1 if e == 'positive' else 0 for e in dt])
parsed[header] = dt
return parsed
Create a CSVDataset
using the defined DataParser
:
>>> import dgl
>>> dataset = dgl.data.CSVDataset('./customized_parser_dataset',
... ndata_parser=MyDataParser(),
... edata_parser=MyDataParser())
>>> print(dataset[0].ndata['label'])
tensor([1, 0, 1, 0, 1])
>>> print(dataset[0].edata['label'])
tensor([1, 0, 1, 1, 0, 1, 0, 1, 0, 1])
Note
To specify different DataParser
s for different node/edge types, pass a dictionary to
ndata_parser
and edata_parser
, where the key is type name (a single string for
node type; a string triplet for edge type) and the value is the DataParser
to use.
Full YAML Specification¶
CSVDataset
allows more flexible control over the loading and parsing process. For example, one
can change the ID column names via meta.yaml
. The example below lists all the supported keys.
version: 1.0.0
dataset_name: some_complex_data
separator: ',' # CSV separator symbol. Default: ','
edge_data:
- file_name: edges_0.csv
etype: [user, follow, user]
src_id_field: src_id # Column name for source node IDs. Default: src_id
dst_id_field: dst_id # Column name for destination node IDs. Default: dst_id
- file_name: edges_1.csv
etype: [user, like, item]
src_id_field: src_id
dst_id_field: dst_id
node_data:
- file_name: nodes_0.csv
ntype: user
node_id_field: node_id # Column name for node IDs. Default: node_id
- file_name: nodes_1.csv
ntype: item
node_id_field: node_id # Column name for node IDs. Default: node_id
graph_data:
file_name: graphs.csv
graph_id_field: graph_id # Column name for graph IDs. Default: graph_id
Top-level¶
At the top level, only 6 keys are available:
version
: Optional. String. It specifies which version ofmeta.yaml
is used. More feature may be added in the future.
dataset_name
: Required. String. It specifies the dataset name.
separator
: Optional. String. It specifies how to parse data in CSV files. Default:','
.
edge_data
: Required. List ofEdgeData
. Meta data for parsing edge CSV files.
node_data
: Required. List ofNodeData
. Meta data for parsing node CSV files.
graph_data
: Optional.GraphData
. Meta data for parsing the graph CSV file.
EdgeData
¶
There are 4 keys:
file_name
: Required. String. The CSV file to load data from.
etype
: Optional. List of string. Edge type name in string triplet: [source node type, relation type, destination node type].
src_id_field
: Optional. String. Which column to read for source node IDs. Default:src_id
.
dst_id_field
: Optional. String. Which column to read for destination node IDs. Default:dst_id
.
NodeData
¶
There are 3 keys:
file_name
: Required. String. The CSV file to load data from.
ntype
: Optional. String. Node type name.
node_id_field
: Optional. String. Which column to read for node IDs. Default:node_id
.
GraphData
¶
There are 2 keys:
file_name
: Required. String. The CSV file to load data from.
graph_id_field
: Optional. String. Which column to read for graph IDs. Default:graph_id
.