6.8 Feature Prefetching¶
In minibatch training of GNNs, especially with neighbor sampling approaches, we often see that a large amount of node features need to be copied to the device for computing GNNs. To mitigate this bottleneck of data movement, DGL supports feature prefetching so that the model computation and data movement can happen in parallel.
Enabling Prefetching with DGL’s Builtin Samplers¶
All the DGL samplers in dgl.dataloading allows users to specify which
node and edge data to prefetch via arguments like prefetch_node_feats
.
For example, the following code asks dgl.dataloading.NeighborSampler
to prefetch
the node data named feat
and save it to the srcdata
of the first message flow
graph. It also asks the sampler to prefetch and save the node data named label
to the dstdata
of the last message flow graph:
graph = ... # the graph to sample from
graph.ndata['feat'] = ... # node feature
graph.ndata['label'] = ... # node label
train_nids = ... # an 1-D integer tensor of training node IDs
# create a sample and specify what data to prefetch
sampler = dgl.dataloading.NeighborSampler(
[15, 10, 5], prefetch_node_feats=['feat'], prefetch_labels=['label'])
# create a dataloader
dataloader = dgl.dataloading.DataLoader(
graph, train_nids, sampler,
batch_size=32,
... # other arguments
)
for mini_batch in dataloader:
# unpack mini batch
input_nodes, output_nodes, subgs = mini_batch
# the following data has been pre-fetched
feat = subgs[0].srcdata['feat']
label = subgs[-1].dstdata['label']
train(subgs, feat, label)
Note
Even without specifying the the prefetch arguments, users can still access
subgs[0].srcdata['feat']
and subgs[-1].dstdata['label']
because DGL
internally keeps a reference to the node/edge data of the original graph when
a subgraph is created. Accessing subgraph features will incur data fetching
from the original graph immediately while prefetching ensures data
to be available before getting from data loader.
Enabling Prefetching in Custom Samplers¶
Users can implement their own rules of prefetching when writing custom samplers.
Here is the code of NeighborSampler
with prefetching:
class NeighborSampler(dgl.dataloading.Sampler):
def __init__(self,
fanouts : list[int],
prefetch_node_feats: list[str] = None,
prefetch_edge_feats: list[str] = None,
prefetch_labels: list[str] = None):
super().__init__()
self.fanouts = fanouts
self.prefetch_node_feats = prefetch_node_feats
self.prefetch_edge_feats = prefetch_edge_feats
self.prefetch_labels = prefetch_labels
def sample(self, g, seed_nodes):
output_nodes = seed_nodes
subgs = []
for fanout in reversed(self.fanouts):
# Sample a fixed number of neighbors of the current seed nodes.
sg = g.sample_neighbors(seed_nodes, fanout)
# Convert this subgraph to a message flow graph.
sg = dgl.to_block(sg, seed_nodes)
seed_nodes = sg.srcdata[NID]
subgs.insert(0, sg)
input_nodes = seed_nodes
# handle prefetching
dgl.set_src_lazy_features(subgs[0], self.prefetch_node_feats)
dgl.set_dst_lazy_features(subgs[-1], self.prefetch_labels)
for subg in subgs:
dgl.set_edge_lazy_features(subg, self.prefetch_edge_feats)
return input_nodes, output_nodes, subgs
Using the set_src_lazy_features()
, set_dst_lazy_features()
and set_edge_lazy_features()
, users can tell DataLoader
which
features to prefetch and where to save them (srcdata
, dstdata
or edata
).
See 6.4 Implementing Custom Graph Samplers for more explanations
on how to write a custom graph sampler.