dgl.sampling.pack_tracesΒΆ
-
dgl.sampling.
pack_traces
(traces, types)[source]ΒΆ Pack the padded traces returned by
random_walk()
into a concatenated array. The padding values (-1) are removed, and the length and offset of each trace is returned along with the concatenated node ID and node type arrays.- Parameters
traces (Tensor) β A 2-dimensional node ID tensor. Must be on CPU and either
int32
orint64
.types (Tensor) β A 1-dimensional node type ID tensor. Must be on CPU and either
int32
orint64
.
- Returns
concat_vids (Tensor) β An array of all node IDs concatenated and padding values removed.
concat_types (Tensor) β An array of node types corresponding for each node in
concat_vids
. Has the same length asconcat_vids
.lengths (Tensor) β Length of each trace in the original traces tensor.
offsets (Tensor) β Offset of each trace in the originial traces tensor in the new concatenated tensor.
Notes
The returned tensors are on CPU.
Examples
>>> g2 = dgl.heterograph({ ... ('user', 'follow', 'user'): ([0, 1, 1, 2, 3], [1, 2, 3, 0, 0]), ... ('user', 'view', 'item'): ([0, 0, 1, 2, 3, 3], [0, 1, 1, 2, 2, 1]), ... ('item', 'viewed-by', 'user'): ([0, 1, 1, 2, 2, 1], [0, 0, 1, 2, 3, 3]) >>> traces, types = dgl.sampling.random_walk( ... g2, [0, 0], metapath=['follow', 'view', 'viewed-by'] * 2, ... restart_prob=torch.FloatTensor([0, 0.5, 0, 0, 0.5, 0])) >>> traces, types (tensor([[ 0, 1, -1, -1, -1, -1, -1], [ 0, 1, 1, 3, 0, 0, 0]]), tensor([0, 0, 1, 0, 0, 1, 0])) >>> concat_vids, concat_types, lengths, offsets = dgl.sampling.pack_traces(traces, types) >>> concat_vids tensor([0, 1, 0, 1, 1, 3, 0, 0, 0]) >>> concat_types tensor([0, 0, 0, 0, 1, 0, 0, 1, 0]) >>> lengths tensor([2, 7]) >>> offsets tensor([0, 2]))
The first tensor
concat_vids
is the concatenation of all paths, i.e. flattened array oftraces
, excluding all padding values (-1).The second tensor
concat_types
stands for the node type IDs of all corresponding nodes in the first tensor.The third and fourth tensor indicates the length and the offset of each path. With these tensors it is easy to obtain the i-th random walk path with:
>>> vids = concat_vids.split(lengths.tolist()) >>> vtypes = concat_vtypes.split(lengths.tolist()) >>> vids[1], vtypes[1] (tensor([0, 1, 1, 3, 0, 0, 0]), tensor([0, 0, 1, 0, 0, 1, 0]))