Source code for dgl.graphbolt.impl.uniform_negative_sampler

"""Uniform negative sampler for GraphBolt."""

import torch
from torch.utils.data import functional_datapipe

from ..negative_sampler import NegativeSampler

__all__ = ["UniformNegativeSampler"]


[docs]@functional_datapipe("sample_uniform_negative") class UniformNegativeSampler(NegativeSampler): """Sample negative destination nodes for each source node based on a uniform distribution. Functional name: :obj:`sample_uniform_negative`. It's important to note that the term 'negative' refers to false negatives, indicating that the sampled pairs are not ensured to be absent in the graph. For each edge ``(u, v)``, it is supposed to generate `negative_ratio` pairs of negative edges ``(u, v')``, where ``v'`` is chosen uniformly from all the nodes in the graph. Parameters ---------- datapipe : DataPipe The datapipe. graph : FusedCSCSamplingGraph The graph on which to perform negative sampling. negative_ratio : int The proportion of negative samples to positive samples. Examples -------- >>> from dgl import graphbolt as gb >>> indptr = torch.LongTensor([0, 1, 2, 3, 4]) >>> indices = torch.LongTensor([1, 2, 3, 0]) >>> graph = gb.fused_csc_sampling_graph(indptr, indices) >>> node_pairs = torch.tensor([[0, 1], [1, 2], [2, 3], [3, 0]]) >>> item_set = gb.ItemSet(node_pairs, names="node_pairs") >>> item_sampler = gb.ItemSampler( ... item_set, batch_size=4,) >>> neg_sampler = gb.UniformNegativeSampler( ... item_sampler, graph, 2) >>> for minibatch in neg_sampler: ... print(minibatch.negative_srcs) ... print(minibatch.negative_dsts) None tensor([[2, 1], [2, 1], [3, 2], [1, 3]]) """ def __init__( self, datapipe, graph, negative_ratio, ): super().__init__(datapipe, negative_ratio) self.graph = graph def _sample_with_etype(self, node_pairs, etype=None, use_seeds=False): if use_seeds: assert node_pairs.ndim == 2 and node_pairs.shape[1] == 2, ( "Only tensor with shape N*2 is supported for negative" + f" sampling, but got {node_pairs.shape}." ) # Sample negative edges, and concatenate positive edges with them. seeds = self.graph.sample_negative_edges_uniform_2( etype, node_pairs, self.negative_ratio, ) # Construct indexes for all node pairs. num_pos_node_pairs = node_pairs.shape[0] negative_ratio = self.negative_ratio pos_indexes = torch.arange( 0, num_pos_node_pairs, device=seeds.device, ) neg_indexes = pos_indexes.repeat_interleave(negative_ratio) indexes = torch.cat((pos_indexes, neg_indexes)) # Construct labels for all node pairs. pos_num = node_pairs.shape[0] neg_num = seeds.shape[0] - pos_num labels = torch.cat( ( torch.ones( pos_num, dtype=torch.bool, device=seeds.device, ), torch.zeros( neg_num, dtype=torch.bool, device=seeds.device, ), ), ) return seeds, labels, indexes else: return self.graph.sample_negative_edges_uniform( etype, node_pairs, self.negative_ratio, )