ItemSetο
- class dgl.graphbolt.ItemSet(items: int | Tensor | Tuple[Tensor], names: str | Tuple[str] | None = None)[source]ο
Bases:
object
A wrapper of a tensor or tuple of tensors.
- Parameters:
items (Union[int, torch.Tensor, Tuple[torch.Tensor]]) β
The tensors to be wrapped. - If it is a single scalar (an integer or a tensor that holds a single
value), the item would be considered as a range_tensor created by torch.arange.
If it is a multi-dimensional tensor, the indexing will be performed along the first dimension.
If it is a tuple, each item in the tuple must be a tensor.
names (Union[str, Tuple[str]], optional) β The names of the items. If it is a tuple, each name must corresponds to an item in the items parameter. The naming is arbitrary, but in general practice, the names should be chosen from [βlabelsβ, βseedsβ, βindexesβ] to align with the attributes of class dgl.graphbolt.MiniBatch.
Examples
>>> import torch >>> from dgl import graphbolt as gb
Integer: number of nodes.
>>> num = 10 >>> item_set = gb.ItemSet(num, names="seeds") >>> list(item_set) [tensor(0), tensor(1), tensor(2), tensor(3), tensor(4), tensor(5), tensor(6), tensor(7), tensor(8), tensor(9)] >>> item_set[:] tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> item_set.names ('seeds',)
Torch scalar: number of nodes. Customizable dtype compared to Integer.
>>> num = torch.tensor(10, dtype=torch.int32) >>> item_set = gb.ItemSet(num, names="seeds") >>> list(item_set) [tensor(0, dtype=torch.int32), tensor(1, dtype=torch.int32), tensor(2, dtype=torch.int32), tensor(3, dtype=torch.int32), tensor(4, dtype=torch.int32), tensor(5, dtype=torch.int32), tensor(6, dtype=torch.int32), tensor(7, dtype=torch.int32), tensor(8, dtype=torch.int32), tensor(9, dtype=torch.int32)] >>> item_set[:] tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=torch.int32) >>> item_set.names ('seeds',)
Single tensor: seed nodes.
>>> node_ids = torch.arange(0, 5) >>> item_set = gb.ItemSet(node_ids, names="seeds") >>> list(item_set) [tensor(0), tensor(1), tensor(2), tensor(3), tensor(4)] >>> item_set[:] tensor([0, 1, 2, 3, 4]) >>> item_set.names ('seeds',)
Tuple of tensors with same shape: seed nodes and labels.
>>> node_ids = torch.arange(0, 5) >>> labels = torch.arange(5, 10) >>> item_set = gb.ItemSet( ... (node_ids, labels), names=("seeds", "labels")) >>> list(item_set) [(tensor(0), tensor(5)), (tensor(1), tensor(6)), (tensor(2), tensor(7)), (tensor(3), tensor(8)), (tensor(4), tensor(9))] >>> item_set[:] (tensor([0, 1, 2, 3, 4]), tensor([5, 6, 7, 8, 9])) >>> item_set.names ('seeds', 'labels')
Tuple of tensors with different shape: seeds and labels.
>>> seeds = torch.arange(0, 10).reshape(-1, 2) >>> labels = torch.tensor([1, 1, 0, 0, 0]) >>> item_set = gb.ItemSet( ... (seeds, labels), names=("seeds", "lables")) >>> list(item_set) [(tensor([0, 1]), tensor([1])), (tensor([2, 3]), tensor([1])), (tensor([4, 5]), tensor([0])), (tensor([6, 7]), tensor([0])), (tensor([8, 9]), tensor([0]))] >>> item_set[:] (tensor([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]), tensor([1, 1, 0, 0, 0])) >>> item_set.names ('seeds', 'labels')
Tuple of tensors with different shape: hyperlink and labels.
>>> seeds = torch.arange(0, 10).reshape(-1, 5) >>> labels = torch.tensor([1, 0]) >>> item_set = gb.ItemSet( ... (seeds, labels), names=("seeds", "lables")) >>> list(item_set) [(tensor([0, 1, 2, 3, 4]), tensor([1])), (tensor([5, 6, 7, 8, 9]), tensor([0]))] >>> item_set[:] (tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]), tensor([1, 0])) >>> item_set.names ('seeds', 'labels')