dgl.remove_nodesο
- dgl.remove_nodes(g, nids, ntype=None, store_ids=False)[source]ο
Remove the specified nodes and return a new graph.
Also delete the features. Edges that connect from/to the nodes will be removed as well. After the removal, DGL re-labels the remaining nodes and edges with IDs from 0.
- Parameters:
nids (int, Tensor, iterable[int]) β The nodes to be removed.
ntype (str, optional) β The type of the nodes to remove. Can be omitted if there is only one node type in the graph.
store_ids (bool, optional) β If True, it will store the raw IDs of the extracted nodes and edges in the
ndata
andedata
of the resulting graph under namedgl.NID
anddgl.EID
, respectively.
- Returns:
The graph with nodes deleted.
- Return type:
Notes
This function discards the batch information. Please use
dgl.DGLGraph.set_batch_num_nodes()
anddgl.DGLGraph.set_batch_num_edges()
on the transformed graph to maintain the information.Examples
>>> import dgl >>> import torch
Homogeneous Graphs
>>> g = dgl.graph((torch.tensor([0, 0, 2]), torch.tensor([0, 1, 2]))) >>> g.ndata['hv'] = torch.arange(3).float().reshape(-1, 1) >>> g.edata['he'] = torch.arange(3).float().reshape(-1, 1) >>> g = dgl.remove_nodes(g, torch.tensor([0, 1])) >>> g Graph(num_nodes=1, num_edges=1, ndata_schemes={'hv': Scheme(shape=(1,), dtype=torch.float32)} edata_schemes={'he': Scheme(shape=(1,), dtype=torch.float32)}) >>> g.ndata['hv'] tensor([[2.]]) >>> g.edata['he'] tensor([[2.]])
Heterogeneous Graphs
>>> g = dgl.heterograph({ ... ('user', 'plays', 'game'): (torch.tensor([0, 1, 1, 2]), ... torch.tensor([0, 0, 1, 1])), ... ('developer', 'develops', 'game'): (torch.tensor([0, 1]), ... torch.tensor([0, 1])) ... }) >>> g = dgl.remove_nodes(g, torch.tensor([0, 1]), ntype='game') >>> g.num_nodes('user') 3 >>> g.num_nodes('game') 0 >>> g.num_edges('plays') 0
See also