dgl.reverseο
- dgl.reverse(g, copy_ndata=True, copy_edata=False, *, share_ndata=None, share_edata=None)[source]ο
Return a new graph with every edges being the reverse ones in the input graph.
The reverse (also called converse, transpose) of a graph with edges \((i_1, j_1), (i_2, j_2), \cdots\) of type
(U, E, V)
is a new graph with edges \((j_1, i_1), (j_2, i_2), \cdots\) of type(V, E, U)
.The returned graph shares the data structure with the original graph, i.e. dgl.reverse will not create extra storage for the reversed graph.
- Parameters:
g (DGLGraph) β The input graph.
copy_ndata (bool, optional) β If True, the node features of the reversed graph are copied from the original graph. If False, the reversed graph will not have any node features. (Default: True)
copy_edata (bool, optional) β If True, the edge features of the reversed graph are copied from the original graph. If False, the reversed graph will not have any edge features. (Default: False)
- Returns:
The reversed graph.
- Return type:
Notes
If
copy_ndata
orcopy_edata
is True, the resulting graph will share the node or edge feature tensors with the input graph. Hence, users should try to avoid in-place operations which will be visible to both graphs.This function discards the batch information. Please use
dgl.DGLGraph.set_batch_num_nodes()
anddgl.DGLGraph.set_batch_num_edges()
on the transformed graph to maintain the information.Examples
Homogeneous graphs
Create a graph to reverse.
>>> import dgl >>> import torch as th >>> g = dgl.graph((th.tensor([0, 1, 2]), th.tensor([1, 2, 0]))) >>> g.ndata['h'] = th.tensor([[0.], [1.], [2.]]) >>> g.edata['h'] = th.tensor([[3.], [4.], [5.]])
Reverse the graph.
>>> rg = dgl.reverse(g, copy_edata=True) >>> rg.ndata['h'] tensor([[0.], [1.], [2.]])
The i-th edge in the reversed graph corresponds to the i-th edge in the original graph. When
copy_edata
is True, they have the same features.>>> rg.edges() (tensor([1, 2, 0]), tensor([0, 1, 2])) >>> rg.edata['h'] tensor([[3.], [4.], [5.]])
Heterogenenous graphs
>>> g = dgl.heterograph({ ... ('user', 'follows', 'user'): (th.tensor([0, 2]), th.tensor([1, 2])), ... ('user', 'plays', 'game'): (th.tensor([1, 2, 1]), th.tensor([2, 1, 1])) ... }) >>> g.nodes['game'].data['hv'] = th.ones(3, 1) >>> g.edges['plays'].data['he'] = th.zeros(3, 1)
The resulting graph will have edge types
('user', 'follows', 'user)
and('game', 'plays', 'user')
.>>> rg = dgl.reverse(g, copy_ndata=True) >>> rg Graph(num_nodes={'game': 3, 'user': 3}, num_edges={('user', 'follows', 'user'): 2, ('game', 'plays', 'user'): 3}, metagraph=[('user', 'user'), ('game', 'user')]) >>> rg.edges(etype='follows') (tensor([1, 2]), tensor([0, 2])) >>> rg.edges(etype='plays') (tensor([2, 1, 1]), tensor([1, 2, 1])) >>> rg.nodes['game'].data['hv'] tensor([[1.], [1.], [1.]]) >>> rg.edges['plays'].data {}