Source code for dgl.traversal

"""Module for graph traversal methods."""
from __future__ import absolute_import

from ._ffi.function import _init_api
from . import backend as F
from . import utils

__all__ = ['bfs_nodes_generator', 'bfs_edges_generator',
           'topological_nodes_generator',
           'dfs_edges_generator', 'dfs_labeled_edges_generator',]

[docs]def bfs_nodes_generator(graph, source, reverse=False): """Node frontiers generator using breadth-first search. Parameters ---------- graph : DGLGraph The graph object. source : list, tensor of nodes Source nodes. reverse : bool, default False If True, traverse following the in-edge direction. Returns ------- list of node frontiers Each node frontier is a list or tensor of node ids. Examples -------- Given a graph (directed, edges from small node id to large): :: 2 - 4 / \\ 0 - 1 - 3 - 5 >>> g = dgl.DGLGraph([(0, 1), (1, 2), (1, 3), (2, 3), (2, 4), (3, 5)]) >>> list(dgl.bfs_nodes_generator(g, 0)) [tensor([0]), tensor([1]), tensor([2, 3]), tensor([4, 5])] """ ghandle = graph._graph._handle source = utils.toindex(source) ret = _CAPI_DGLBFSNodes(ghandle, source.todgltensor(), reverse) all_nodes = utils.toindex(ret(0)).tousertensor() # TODO(minjie): how to support directly creating python list sections = utils.toindex(ret(1)).tonumpy().tolist() node_frontiers = F.split(all_nodes, sections, dim=0) return node_frontiers
[docs]def bfs_edges_generator(graph, source, reverse=False): """Edges frontiers generator using breadth-first search. Parameters ---------- graph : DGLGraph The graph object. source : list, tensor of nodes Source nodes. reverse : bool, default False If True, traverse following the in-edge direction. Returns ------- list of edge frontiers Each edge frontier is a list or tensor of edge ids. Examples -------- Given a graph (directed, edges from small node id to large, sorted in lexicographical order of source-destination node id tuple): :: 2 - 4 / \\ 0 - 1 - 3 - 5 >>> g = dgl.DGLGraph([(0, 1), (1, 2), (1, 3), (2, 3), (2, 4), (3, 5)]) >>> list(dgl.bfs_edges_generator(g, 0)) [tensor([0]), tensor([1, 2]), tensor([4, 5])] """ ghandle = graph._graph._handle source = utils.toindex(source) ret = _CAPI_DGLBFSEdges(ghandle, source.todgltensor(), reverse) all_edges = utils.toindex(ret(0)).tousertensor() # TODO(minjie): how to support directly creating python list sections = utils.toindex(ret(1)).tonumpy().tolist() edge_frontiers = F.split(all_edges, sections, dim=0) return edge_frontiers
[docs]def topological_nodes_generator(graph, reverse=False): """Node frontiers generator using topological traversal. Parameters ---------- graph : DGLGraph The graph object. reverse : bool, optional If True, traverse following the in-edge direction. Returns ------- list of node frontiers Each node frontier is a list or tensor of node ids. Examples -------- Given a graph (directed, edges from small node id to large): :: 2 - 4 / \\ 0 - 1 - 3 - 5 >>> g = dgl.DGLGraph([(0, 1), (1, 2), (1, 3), (2, 3), (2, 4), (3, 5)]) >>> list(dgl.topological_nodes_generator(g)) [tensor([0]), tensor([1]), tensor([2]), tensor([3, 4]), tensor([5])] """ ghandle = graph._graph._handle ret = _CAPI_DGLTopologicalNodes(ghandle, reverse) all_nodes = utils.toindex(ret(0)).tousertensor() # TODO(minjie): how to support directly creating python list sections = utils.toindex(ret(1)).tonumpy().tolist() return F.split(all_nodes, sections, dim=0)
[docs]def dfs_edges_generator(graph, source, reverse=False): """Edge frontiers generator using depth-first-search (DFS). Multiple source nodes can be specified to start the DFS traversal. One needs to make sure that each source node belongs to different connected component, so the frontiers can be easily merged. Otherwise, the behavior is undefined. Parameters ---------- graph : DGLGraph The graph object. source : list, tensor of nodes Source nodes. reverse : bool, optional If True, traverse following the in-edge direction. Returns ------- list of edge frontiers Each edge frontier is a list or tensor of edge ids. Examples -------- Given a graph (directed, edges from small node id to large): :: 2 - 4 / \\ 0 - 1 - 3 - 5 Edge addition order [(0, 1), (1, 2), (1, 3), (2, 3), (2, 4), (3, 5)] >>> g = dgl.DGLGraph([(0, 1), (1, 2), (1, 3), (2, 3), (2, 4), (3, 5)]) >>> list(dgl.dfs_edges_generator(g, 0)) [tensor([0]), tensor([1]), tensor([3]), tensor([5]), tensor([4])] """ ghandle = graph._graph._handle source = utils.toindex(source) ret = _CAPI_DGLDFSEdges(ghandle, source.todgltensor(), reverse) all_edges = utils.toindex(ret(0)).tousertensor() # TODO(minjie): how to support directly creating python list sections = utils.toindex(ret(1)).tonumpy().tolist() return F.split(all_edges, sections, dim=0)
[docs]def dfs_labeled_edges_generator( graph, source, reverse=False, has_reverse_edge=False, has_nontree_edge=False, return_labels=True): """Produce edges in a depth-first-search (DFS) labeled by type. There are three labels: FORWARD(0), REVERSE(1), NONTREE(2) A FORWARD edge is one in which `u` has been visited but `v` has not. A REVERSE edge is one in which both `u` and `v` have been visited and the edge is in the DFS tree. A NONTREE edge is one in which both `u` and `v` have been visited but the edge is NOT in the DFS tree. See ``networkx``'s :func:`dfs_labeled_edges <networkx.algorithms.traversal.depth_first_search.dfs_labeled_edges>` for more details. Multiple source nodes can be specified to start the DFS traversal. One needs to make sure that each source node belongs to different connected component, so the frontiers can be easily merged. Otherwise, the behavior is undefined. Parameters ---------- graph : DGLGraph The graph object. source : list, tensor of nodes Source nodes. reverse : bool, optional If true, traverse following the in-edge direction. has_reverse_edge : bool, optional True to include reverse edges. has_nontree_edge : bool, optional True to include nontree edges. return_labels : bool, optional True to return the labels of each edge. Returns ------- list of edge frontiers Each edge frontier is a list or tensor of edge ids. list of list of int Label of each edge, organized in the same order as the edge frontiers. Examples -------- Given a graph (directed, edges from small node id to large): :: 2 - 4 / \\ 0 - 1 - 3 - 5 Edge addition order [(0, 1), (1, 2), (1, 3), (2, 3), (2, 4), (3, 5)] >>> g = dgl.DGLGraph([(0, 1), (1, 2), (1, 3), (2, 3), (2, 4), (3, 5)]) >>> list(dgl.dfs_labeled_edges_generator(g, 0, has_nontree_edge=True)) (tensor([0]), tensor([1]), tensor([3]), tensor([5]), tensor([4]), tensor([2])), (tensor([0]), tensor([0]), tensor([0]), tensor([0]), tensor([0]), tensor([2])) """ ghandle = graph._graph._handle source = utils.toindex(source) ret = _CAPI_DGLDFSLabeledEdges( ghandle, source.todgltensor(), reverse, has_reverse_edge, has_nontree_edge, return_labels) all_edges = utils.toindex(ret(0)).tousertensor() # TODO(minjie): how to support directly creating python list if return_labels: all_labels = utils.toindex(ret(1)).tousertensor() sections = utils.toindex(ret(2)).tonumpy().tolist() return (F.split(all_edges, sections, dim=0), F.split(all_labels, sections, dim=0)) else: sections = utils.toindex(ret(1)).tonumpy().tolist() return F.split(all_edges, sections, dim=0)
_init_api("dgl.traversal")