APPNPConvΒΆ
-
class
dgl.nn.mxnet.conv.
APPNPConv
(k, alpha, edge_drop=0.0)[source]ΒΆ Bases:
mxnet.gluon.block.Block
Approximate Personalized Propagation of Neural Predictions layer from Predict then Propagate: Graph Neural Networks meet Personalized PageRank
\[ \begin{align}\begin{aligned}H^{0} &= X\\H^{l+1} &= (1-\alpha)\left(\tilde{D}^{-1/2} \tilde{A} \tilde{D}^{-1/2} H^{l}\right) + \alpha H^{0}\end{aligned}\end{align} \]where \(\tilde{A}\) is \(A\) + \(I\).
- Parameters
Example
>>> import dgl >>> import numpy as np >>> import mxnet as mx >>> from dgl.nn import APPNPConv >>> >>> g = dgl.graph(([0,1,2,3,2,5], [1,2,3,4,0,3])) >>> feat = mx.nd.ones((6, 10)) >>> conv = APPNPConv(k=3, alpha=0.5) >>> conv.initialize(ctx=mx.cpu(0)) >>> res = conv(g, feat) >>> res [[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ] [1.0303301 1.0303301 1.0303301 1.0303301 1.0303301 1.0303301 1.0303301 1.0303301 1.0303301 1.0303301 ] [0.86427665 0.86427665 0.86427665 0.86427665 0.86427665 0.86427665 0.86427665 0.86427665 0.86427665 0.86427665] [0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ]] <NDArray 6x10 @cpu(0)>
-
forward
(graph, feat)[source]ΒΆ Compute APPNP layer.
- Parameters
graph (DGLGraph) β The graph.
feat (mx.NDArray) β The input feature of shape \((N, *)\). \(N\) is the number of nodes, and \(*\) could be of any shape.
- Returns
The output feature of shape \((N, *)\) where \(*\) should be the same as input shape.
- Return type
mx.NDArray