GatedGraphConvΒΆ
-
class
dgl.nn.mxnet.conv.
GatedGraphConv
(in_feats, out_feats, n_steps, n_etypes, bias=True)[source]ΒΆ Bases:
mxnet.gluon.block.Block
Gated Graph Convolution layer from Gated Graph Sequence Neural Networks
\[ \begin{align}\begin{aligned}h_{i}^{0} &= [ x_i \| \mathbf{0} ]\\a_{i}^{t} &= \sum_{j\in\mathcal{N}(i)} W_{e_{ij}} h_{j}^{t}\\h_{i}^{t+1} &= \mathrm{GRU}(a_{i}^{t}, h_{i}^{t})\end{aligned}\end{align} \]- Parameters
in_feats (int) β Input feature size; i.e, the number of dimensions of \(x_i\).
out_feats (int) β Output feature size; i.e., the number of dimensions of \(h_i^{(t+1)}\).
n_steps (int) β Number of recurrent steps; i.e, the \(t\) in the above formula.
n_etypes (int) β Number of edge types.
bias (bool) β If True, adds a learnable bias to the output. Default:
True
. Can only be set to True in MXNet.
Example
>>> import dgl >>> import numpy as np >>> import mxnet as mx >>> from dgl.nn import GatedGraphConv >>> >>> g = dgl.graph(([0,1,2,3,2,5], [1,2,3,4,0,3])) >>> feat = mx.nd.ones((6, 10)) >>> conv = GatedGraphConv(10, 10, 2, 3) >>> conv.initialize(ctx=mx.cpu(0)) >>> etype = mx.nd.array([0,1,2,0,1,2]) >>> res = conv(g, feat, etype) >>> res [[0.24378185 0.17402579 0.2644723 0.2740628 0.14041871 0.32523093 0.2703067 0.18234392 0.32777587 0.30957845] [0.17872348 0.28878236 0.2509409 0.20139427 0.3355541 0.22643831 0.2690711 0.22341749 0.27995753 0.21575949] [0.23911178 0.16696918 0.26120248 0.27397877 0.13745922 0.3223175 0.27561218 0.18071817 0.3251124 0.30608907] [0.25242943 0.3098581 0.25249368 0.27968448 0.24624602 0.12270881 0.335147 0.31550157 0.19065917 0.21087633] [0.17503153 0.29523152 0.2474858 0.20848347 0.3526433 0.23443702 0.24741334 0.21986549 0.28935105 0.21859099] [0.2159364 0.26942077 0.23083271 0.28329757 0.24758333 0.24230732 0.23958017 0.23430146 0.26431587 0.27001363]] <NDArray 6x10 @cpu(0)>
-
forward
(graph, feat, etypes)[source]ΒΆ Compute Gated Graph Convolution layer.
- Parameters
graph (DGLGraph) β The graph.
feat (mxnet.NDArray) β The input feature of shape \((N, D_{in})\) where \(N\) is the number of nodes of the graph and \(D_{in}\) is the input feature size.
etypes (torch.LongTensor) β The edge type tensor of shape \((E,)\) where \(E\) is the number of edges of the graph.
- Returns
The output feature of shape \((N, D_{out})\) where \(D_{out}\) is the output feature size.
- Return type
mxnet.NDArray