NNConvΒΆ
-
class
dgl.nn.mxnet.conv.
NNConv
(in_feats, out_feats, edge_func, aggregator_type, residual=False, bias=True)[source]ΒΆ Bases:
mxnet.gluon.block.Block
Graph Convolution layer from Neural Message Passing for Quantum Chemistry
\[h_{i}^{l+1} = h_{i}^{l} + \mathrm{aggregate}\left(\left\{ f_\Theta (e_{ij}) \cdot h_j^{l}, j\in \mathcal{N}(i) \right\}\right)\]where \(e_{ij}\) is the edge feature, \(f_\Theta\) is a function with learnable parameters.
- Parameters
in_feats (int) β Input feature size; i.e, the number of dimensions of \(h_j^{(l)}\). NN can be applied on homogeneous graph and unidirectional bipartite graph. If the layer is to be applied on a unidirectional bipartite graph,
in_feats
specifies the input feature size on both the source and destination nodes. If a scalar is given, the source and destination node feature size would take the same value.out_feats (int) β Output feature size; i.e., the number of dimensions of \(h_i^{(l+1)}\).
edge_func (callable activation function/layer) β Maps each edge feature to a vector of shape
(in_feats * out_feats)
as weight to compute messages. Also is the \(f_\Theta\) in the formula.aggregator_type (str) β Aggregator type to use (
sum
,mean
ormax
).residual (bool, optional) β If True, use residual connection. Default:
False
.bias (bool, optional) β If True, adds a learnable bias to the output. Default:
True
.
Examples
>>> import dgl >>> import numpy as np >>> import mxnet as mx >>> from mxnet import gluon >>> from dgl.nn import NNConv >>> >>> # Case 1: Homogeneous graph >>> g = dgl.graph(([0,1,2,3,2,5], [1,2,3,4,0,3])) >>> g = dgl.add_self_loop(g) >>> feat = mx.nd.ones((6, 10)) >>> lin = gluon.nn.Dense(20) >>> lin.initialize(ctx=mx.cpu(0)) >>> def edge_func(efeat): >>> return lin(efeat) >>> efeat = mx.nd.ones((12, 5)) >>> conv = NNConv(10, 2, edge_func, 'mean') >>> conv.initialize(ctx=mx.cpu(0)) >>> res = conv(g, feat, efeat) >>> res [[0.39946803 0.32098457] [0.39946803 0.32098457] [0.39946803 0.32098457] [0.39946803 0.32098457] [0.39946803 0.32098457] [0.39946803 0.32098457]] <NDArray 6x2 @cpu(0)>
>>> # Case 2: Unidirectional bipartite graph >>> u = [0, 1, 0, 0, 1] >>> v = [0, 1, 2, 3, 2] >>> g = dgl.heterograph({('_N', '_E', '_N'):(u, v)}) >>> u_feat = mx.nd.random.randn(2, 10) >>> v_feat = mx.nd.random.randn(4, 10) >>> conv = NNConv(10, 2, edge_func, 'mean') >>> conv.initialize(ctx=mx.cpu(0)) >>> efeat = mx.nd.ones((5, 5)) >>> res = conv(g, (u_feat, v_feat), efeat) >>> res [[ 0.24425688 0.3238042 ] [-0.11651017 -0.01738572] [ 0.06387337 0.15320925] [ 0.24425688 0.3238042 ]] <NDArray 4x2 @cpu(0)>
-
forward
(graph, feat, efeat)[source]ΒΆ Compute MPNN Graph Convolution layer.
- Parameters
graph (DGLGraph) β The graph.
feat (mxnet.NDArray or pair of mxnet.NDArray) β The input feature of shape \((N, D_{in})\) where \(N\) is the number of nodes of the graph and \(D_{in}\) is the input feature size.
efeat (mxnet.NDArray) β The edge feature of shape \((N, *)\), should fit the input shape requirement of
edge_nn
.
- Returns
The output feature of shape \((N, D_{out})\) where \(D_{out}\) is the output feature size.
- Return type
mxnet.NDArray