SAGEConvΒΆ
-
class
dgl.nn.mxnet.conv.
SAGEConv
(in_feats, out_feats, aggregator_type='mean', feat_drop=0.0, bias=True, norm=None, activation=None)[source]ΒΆ Bases:
mxnet.gluon.block.Block
GraphSAGE layer from Inductive Representation Learning on Large Graphs
\[ \begin{align}\begin{aligned}h_{\mathcal{N}(i)}^{(l+1)} &= \mathrm{aggregate} \left(\{h_{j}^{l}, \forall j \in \mathcal{N}(i) \}\right)\\h_{i}^{(l+1)} &= \sigma \left(W \cdot \mathrm{concat} (h_{i}^{l}, h_{\mathcal{N}(i)}^{l+1}) \right)\\h_{i}^{(l+1)} &= \mathrm{norm}(h_{i}^{(l+1)})\end{aligned}\end{align} \]- Parameters
in_feats (int, or pair of ints) β
Input feature size; i.e, the number of dimensions of \(h_i^{(l)}\).
GATConv can be applied on homogeneous graph and unidirectional bipartite graph. If the layer applies on a unidirectional bipartite graph,
in_feats
specifies the input feature size on both the source and destination nodes. If a scalar is given, the source and destination node feature size would take the same value.If aggregator type is
gcn
, the feature size of source and destination nodes are required to be the same.out_feats (int) β Output feature size; i.e, the number of dimensions of \(h_i^{(l+1)}\).
aggregator_type (str) β Aggregator type to use (
mean
,gcn
,pool
,lstm
).feat_drop (float) β Dropout rate on features, default:
0
.bias (bool) β If True, adds a learnable bias to the output. Default:
True
.norm (callable activation function/layer or None, optional) β If not None, applies normalization to the updated node features.
activation (callable activation function/layer or None, optional) β If not None, applies an activation function to the updated node features. Default:
None
.
Examples
>>> import dgl >>> import numpy as np >>> import mxnet as mx >>> from dgl.nn import SAGEConv >>> >>> # Case 1: Homogeneous graph >>> g = dgl.graph(([0,1,2,3,2,5], [1,2,3,4,0,3])) >>> g = dgl.add_self_loop(g) >>> feat = mx.nd.ones((6, 10)) >>> conv = SAGEConv(10, 2, 'pool') >>> conv.initialize(ctx=mx.cpu(0)) >>> res = conv(g, feat) >>> res [[ 0.32144994 -0.8729614 ] [ 0.32144994 -0.8729614 ] [ 0.32144994 -0.8729614 ] [ 0.32144994 -0.8729614 ] [ 0.32144994 -0.8729614 ] [ 0.32144994 -0.8729614 ]] <NDArray 6x2 @cpu(0)>
>>> # Case 2: Unidirectional bipartite graph >>> u = [0, 1, 0, 0, 1] >>> v = [0, 1, 2, 3, 2] >>> g = dgl.heterograph({('_N', '_E', '_N'):(u, v)}) >>> u_fea = mx.nd.random.randn(2, 5) >>> v_fea = mx.nd.random.randn(4, 10) >>> conv = SAGEConv((5, 10), 2, 'pool') >>> conv.initialize(ctx=mx.cpu(0)) >>> res = conv(g, (u_fea, v_fea)) >>> res [[-0.60524774 0.7196473 ] [ 0.8832787 -0.5928619 ] [-1.8245722 1.159798 ] [-1.0509381 2.2239418 ]] <NDArray 4x2 @cpu(0)>
-
forward
(graph, feat)[source]ΒΆ Compute GraphSAGE layer.
- Parameters
graph (DGLGraph) β The graph.
feat (mxnet.NDArray or pair of mxnet.NDArray) β If a single tensor is given, it represents the input feature of shape \((N, D_{in})\) where \(D_{in}\) is size of input feature, \(N\) is the number of nodes. If a pair of tensors are given, the pair must contain two tensors of shape \((N_{in}, D_{in_{src}})\) and \((N_{out}, D_{in_{dst}})\).
- Returns
The output feature of shape \((N, D_{out})\) where \(D_{out}\) is size of output feature.
- Return type
mxnet.NDArray